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Abstract. We show how and why the short distance (“hard”) interaction, which is calculated in perturba-
tive QCD, provides a mass cutoff in Gribov’s formula for photon-proton collisions. This enables us to find a
new and more restrictive unitarity bound for this process, σ(γ∗p) ≤ C(ln 1

x
)

5
2 . We develop a simple model

that consists of “soft” and “hard” contributions, which yields a qualitative description of the published
experimental data over a wide range of photon virtualities (Q2) and energies (W ). This model provides a
quantitative way of evaluating the relative rate of the short and long distance contributions, in the different
kinematic regions. The main results of the analysis are (i) that even at Q2 = 0 and high energies the short
distance contribution is not small, and it provides a possible explanation for the experimental rise of the
photoproduction cross section; and (ii) at large values of Q2, the long distance processes still contribute
to the total cross section.

1 Introduction

The total cross section of a hadron-hadron interaction is
bound by the Froissart-Martin limit [1]

σtot ≤ C ln2 s

s0
, (1)

where C = π
µ2 , depends on the mass of the lightest parti-

cle exchanged in the crossed channel. The bound is a con-
sequence of s-channel unitarity, analyticity and crossing
symmetry. In spite of the ambiguity in the determination
of C, we suggest that at the presently available hadron
accelerator energies one should look for phenomena asso-
ciated with s-channel unitarity, rather than the absolute
bound. Indeed, a careful study [2] shows that the scale
of saturation of s-channel unitarity in elastic p̄p reactions
is above the Tevatron energy, while the saturation scale
for diffractive channels is considerably lower, appearing at
ISR energies. This qualitative theoretical study is strongly
supported by the experimental observation that, whereas
σel/σtot grows all through the ISR-Tevatron range, the
ratio σdiff/σtot decreases with energy [3].

The study of unitarity and the Froissart-Martin
bounds in DIS are more complicated than for the hadron-
hadron case. These complications originate from ambigu-
ities in the implementation of the unitarity constraints
due to electromagnetic photon coupling and the absence
of a proper elastic channel, as well as the introduction of
the mass of the virtual photon as an additional kinematic

variable. From a phenomenological point of view, we have
to take into account the “soft” and “hard”, or alterna-
tively, the long distance and short distance phenomena,
as contributors to the total γ∗p cross section, or the tar-
get structure function. This differs from the usual picture
of the hadron-hadron collision, where the incoming time
like particle masses are fixed, and the total cross section
is determined by the “soft” (long distance) Pomeron.

A remarkable simplification of the DIS analysis has
been suggested by Gribov [4] in the context of DIS on a
nuclear target. Gribov’s main observation was that at high
energies, the γ∗ fluctuates into a hadronic system (i.e. q̄q
to the lowest order) with a coherence length, lc = 1

mx ,
which is much larger than the target radius. m denotes the
target mass and x the Bjorken scaling variable (x = Q2

s ,
where Q2 is the photon virtuality). Hence, we can describe
DIS as a two step process

1) The γ∗ transforms into a hadronic system well be-
fore the interaction with the target.

2) The produced hadronic system interacts with the
target.

Gribov added two technical assumptions, which sim-
plified the calculation

a) The hadronic interaction is a black disc interaction.
This assumption was made for a heavy nuclear target.
In the black disc limit, the strong interaction diffractive
dissociation channels M2p → M ′2p with M 6= M ′ can
be neglected.
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Fig. 1. The generalized Gribov’s formula for DIS

b) A dispersion relation, without subtractions, can be
written in terms of the variable M2.

The resulting DIS cross section is then written as

σ(γ∗N) =
αem

3 π

∫
R(M2) M2 d M2

(Q2 + M2)2
σM2N (s) . (2)

Here R(M2) is defined as the ratio

R(M2) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

. (3)

The notation is illustrated in Fig. 1 where M2 is the mass
squared of the scattered hadronic system, Γ 2(M2) =
R(M2) and σM2N (s) is the cross section for the hadronic
system to scatter off the nucleonic target.

Assuming (1) for σM2N and integrating (2) over M2 we
obtain a γ∗p cross section which behaves like ln(M2

max+Q2

M2
min

+Q2 ).

We note that M2
min = 4m2

π, whereas M2
max ∝ s, there-

fore, one easily obtains the Gribov’s bound [5]

σ(γ∗N) ≤ αem

3 π
R∞Cln2 s

s0
ln

1
x

, (4)

here R∞ denotes the ratio given by (3) in the high energy
limit. The logarithmic behaviour of the above bound is
unchanged by the introduction of an arbitrary high mass
cutoff M2

s ≤ 0.1 [5]. A disturbing feature of (4), is that it
is less stringent than the Froissart-Martin bound, and we
question whether this is a genuine feature of DIS, or an
artifact of our approach and the assumed input. In par-
ticular, an extra logarithmic power of M2 which appears
in (2) due to the upper limit of the integration, does not
appear explicitly in Gribov’s formula.

Attempting to clarify these problems, we present a cal-
culation that maintains Gribov’s basic hypothesis, which
we find attractive, but gives up the black disc assumption
for large values of M2. The physical reason why the black
disc assumption cannot be correct, even for a very heavy
nucleus, or at extremely high energies in the Froissart-
Martin region, is simple. The quark-antiquark pair with
a large mass has a small transverse size, typically of the
order of r⊥ ∝ 1

M . Being colour neutral such a pair can
penetrate without interacting through a large target such
as a heavy nucleus, or a hadron at ultra high energies.

The attractive feature of this scenario is that at large M2

the interaction takes place at small distances, or in other
words, it is a hard process which can be calculated in the
framework of perturbative QCD (pQCD).

In Sect. 2 we develop a general method to take into ac-
count the effect described above, and show that (4) should
be replaced by the following relation:

σ(γ∗N) ≤ αem

3 π
R∞C ln2 s

s0
ln(

Q2 + M2(x)
Q2 + M2

0
) , (5)

where M2(x) is the solution of the equation

4παS

3 R2
N M2(x)

xGDGLAP (x, M2(x)) = 1 . (6)

xG denotes the gluon density of the target, and R2
N the

gluon correlation radius, that has been estimated using
the HERA diffractive dissociation data in [6]. M2

0 is a
cutoff in mass that separates the “soft” (lomg distance)
processes from the “hard” (short distance) ones. Clearly,
the assumption that the production for M2 < M2

0 is soft,
whereas M2 ≥ M2

0 is hard, is an oversimplification. In
our approach, the value of M2

0 is a pure phenomenological
parameter, which we determine from a fit to the experi-
mental DIS data at sufficiently small values of Q2.

In Sect. 3 we develop a phenomenological approach
based on our general formulae of Sect. 2, that allows us to
match the DIS and real photoproduction data. The main
idea underlying our approach is to parameterize the low
mass region using Gribov’s formula for the “soft” pro-
cesses, while for the high M2 contribution, the leading
αS ln(1/x) approximation of pQCD is used. We show that
with the choice M2

0 ≈ 5 GeV 2, we are able to qualita-
tively describe the main features of the experimental data
for photon nucleon interactions at high energy, and for
most values of the photon virtuality (Q2).

2 General formalism and a Gribov-Froissart
type bound for DIS

2.1 A generalization of the Gribov’s formula

As mentioned above, Gribov argued that one can use a
dispersion relation with respect to the masses M and M ′
to describe the photon-hadron interaction (see Fig. 1 for
notation), as the correlation length lc = 1

mx � RN , the
target size. Based on this idea we can write a general for-
mula for the photon-hadron interaction,

σ(γ∗N) =
αem

3 π

∫
Γ (M2) d M2

Q2 + M2

×σ(M2, M ′2, s)
Γ (M ′2) d M ′2

Q2 + M ′2 . (7)

In the black disc approximation
σ(M2, M ′2, s) = 2 π R2

N M2 δ(M2 − M ′2), which leads to
the Gribov’s formula of (2). Equation (7) enables us to
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separate the “soft” and “hard” interactions, by introduc-
ing a separation scale M0 in the integral over the masses
M and M ′ in (7). Equation (7) can be rewritten in the
form

σ(γ∗N) = σsoft + σhard , (8)

where

σsoft =
αem

3 π

∫ M2
0

4m2
π

Γ (M2) d M2

Q2 + M2

×σ(M2, M ′2, s)
Γ (M ′2) d M ′2

Q2 + M ′2

≤ αem

3 π

∫ M2
0

4m2
π

R(M2) M2 d M2

(Q2 + M2)2
σM2 N (s) . (9)

Here, we have used Gribov’s ideas to estimate the contri-
bution of the “soft” processes using the black disc approx-
imation. It would be preferable if the “soft” contribution
could be calculated in nonperturbative QCD (npQCD).
Thus far, unfortunately, no consistent npQCD approach
has been developed for this contribution and what we
have at hand are only phenomenological parameteriza-
tions describing the “soft” hadron processes. We observe
that experimentally σdiff

σel
is decreasing rapidly with en-

ergy in nucleon-nucleon interactions [3]. In our context
this translates to the observation that a transition from
a hadronic system with mass M to one with mass M ′ is
somewhat smaller than the elastic cross section which does
not change the value of the mass. Moreover, we expect the-
oretically the ratio σdiff

σel
to decrease logarithmically in the

high energy limit [2]. These observations support our idea
that a suppression of M to M ′ transition can be used as
the first order estimate of the “soft” contribution in (7).
Clearly, at this stage, any description of the “soft” term
in (8) has to be based on a model.

An attractive feature of our approach is the introduc-
tion of the separation scale M0. This allows us to use
both the “soft” high energy phenomenology as well as the
pQCD calculation for the photon-hadron interaction at
high energy.

Accordingly, for the short distance contributions we
have

σhard =
αem

3 π

∫ ∞

M2
0

Γ (M2) d M2

Q2 + M2

×σQCD(M2, M ′2, s)
Γ (M ′2) d M ′2

Q2 + M ′2 , (10)

where we can use the leading αS ln( 1
x ) approximation of

pQCD to evaluate this integral.

2.2 The “hard” contribution
to the generalized Gribov’s formula

We wish to rewrite the formula for the “hard” DIS cross
section in a form which is similar to (10). The cross section

for DIS in the region of small x (high energy) in the leading
αS ln( 1

x ) approximation of pQCD, has the form [7,8]

σQCD
γ∗p =

∫ 1

0
dz

∫
d2r⊥ |Ψγ∗

(Q2, z, r⊥)|2

×
∫

d2btσN (x, r⊥, bt) , (11)

where Ψγ∗
is the wave function of the virtual photon.

Although the separation between the “soft” and “hard”
sectors is more natural in the analysis of longitudinal po-
larized photons1, we limit our discussion at this stage to
transverse polarized photons as this gives the dominant
contribution to the total cross section. The calculations
pertaining to the longitudinal polarized photons will be
published elsewhere.

For a transverse polarized photon we have [9]

|Ψγ∗
T |2 =

αemNc

2π2

∑
f

Z2
f [z2 + (1 − z)2]

×Q̄2 K2
1 (Q̄ r⊥) , (12)

where K1 is the modified Bessel function, Q̄2 = Q2z(1−z),
and Nc the number of colours. Zf and z are the fraction of
the charge, and the fraction of energy carried by the quark.
r⊥ denotes the transverse splitting between the quark and
antiquark. σN (x, r⊥, bt) is the cross section of the colour
dipole of a size r⊥ with the target at fixed impact param-
eter bt. This cross section is equal to

σN (x, r⊥, bt) = 2 Im ael(x, r⊥, bt) , (13)

where ael is the elastic amplitude in the bt-representation,
which is closely related to the scattering amplitude of
the dipole at a definite value of the transfer momentum
squared t = −q2

t

ael(x, r⊥, bt) =
1
2π

∫
d2qt e−iqt·bt A(x, r⊥, t) . (14)

Since high energy experimental data suggest that Re ael �
Im ael, s-channel unitarity implies [7,8]

σN (x, r⊥, bt) = 2 {1 − e− 1
2 Ω} , (15)

with arbitrary real function Ω. In the kinematic region
where Ω � 1, for dipoles of small sizes r⊥ � RN , this
function is equal to [10]

Ω = S(bt)
π2αS

3
r2
⊥ xG(x,

4
r2
⊥

) . (16)

S(bt) is the nonperturbative two gluon form factor, which
normalizes as

∫
d2btS(bt) = 1. From general principles of

analyticity we only know its large bt behaviour, S(bt) |bt →∞
→ e− 2 µ bt , where µ is the mass of the lightest hadron
(pion).

1 This subject will be further discussed in Sect. 3
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Many practical applications assume an exponential pa-
rameterization for S(bt) of the form

S(bt) =
1

πR2
N

e
− b2

t
R2

N , (17)

where R2
N is the correlation length between two gluons in

the proton. For the case of uncorrelated gluons RN is the
hadron (proton) radius.

We wish to comment on the form of (16), recalling
the standard procedure for solving the DGLAP evolution
equations.

1) The first step: we introduce the moments of the
parton density,

xG(x, Q2) =
1

2πi

∫
C

e−ω ln(1/x) M(ω, Q2) dω,

where the contour C is located to the right of all the sin-
gularities of the moment M(ω, Q2).

2) The second step: we find the solution to the DGLAP
equations for the moment

dM(ω, Q2)
d lnQ2 = γ(ω) M(ω, Q2) . (18)

The solution is

M(ω, Q2) = M(ω, Q2
0) eγ(ω) ln(Q2/Q2

0) . (19)

Here M(ω, Q2
0) is the nonperturbative input which is taken

either from experimental data or from the “soft” (model
dependent) phenomenology.

3) The third step: we find the solution for the parton
density using the inverse transform

xG(x, Q2) =
∫

C

dω

2πi
eω ln(1/x)+γ(ω) ln(Q2/Q2

0)

×M(ω, Q2
0) . (20)

We conclude that in order to find a solution of the
DGLAP equation we need to know the nonperturbative
input M(ω, Q2

0) and the anomalous dimension γ(ω), which
we can calculate in pQCD. To obtain the bt-dependence of
the deep inelastic structure function we have to calculate
the t-dependence of the imaginary part of the virtual pho-
ton Compton amplitude (see (13) and (14)). In the frame-
work of the DGLAP evolution equations we have two dif-
ferent regions of t: (i) t ≤ Q2

0 and (ii) t ≥ Q2
0. For the case

when t ≥ Q2
0, t defines the factorization scale and replaces

Q2
0 in (20) (see [11]). However, for t ≤ Q2 the factoriza-

tion scale is equal to Q2
0 and the only t-dependence is con-

centrated in M(ω, Q2
0; t). The factorizable form of the ini-

tial moments M(ω, Q2
0; t)=M(ω, Q2

0) F (t) is certainly an
assumed model, but this model is reasonable for t � Q2

0.
It should be stressed that this assumption which led to
the explicit form of (16), is not needed for the large bt be-
haviour, which is the only ingredient of (16) used for the
proof of the Gribov-Froissart bound for DIS.

Using (15), we can distinguish between two kinematic
limits that we use for our approximation.

I) Ω � 1 and σN (x, r⊥, bt) → Ω with Ω given by
(16).

II) Ω � 1 where σN (x, r⊥, bt) = 2 {1 − e− 1
2 Ω} → 2 .

At each fixed x and r⊥ the boundary between these
two regions occurs at bt = b0, which can be determined
from the equation

S(b0)
π2αS

3
r2
⊥ xG(x,

4
r2
⊥

) = 1 . (21)

Substituting the large bt behaviour of the form factor
S(bt), one finds

b0 =
1
2µ

ln[r2
⊥xG(x,

4
r2
⊥

)] . (22)

In the kinematic region II we rewrite (11) in the form
of (10). This is a very simple task once we recall that

Q̄K1(Q̄r⊥) =
∫

k2 dk

Q̄2 + k2 J0(kr⊥) , (23)

or

[Q̄K1(Q̄r⊥)]2 =
∫

k2
1 dk1

Q̄2 + k2
1

J0(k1r⊥)

×
∫

k2
2 dk2

Q̄2 + k2
2

J0(k2r⊥) . (24)

Using the simple form of σN (x, rperp, bt) = 2 in region II,
one can integrate (11) over k2 and z introducing a new
variable M2 = k2

1
z(1−z) . We obtain

σQCD
γ∗p =

αem2Nc

3π2

∑
f

Z2
f

×
∫ ∞

M2
0

M2dM2

(Q2 + M2)2
π

∫ b20

0
db2

t . (25)

At first sight it appears that there is no natural cutoff in
the above M2 integration, but as we shall see later this is
not so.

2.3 The unitarity bound on the photon cross section

To obtain the unitarity bound for the total cross section
of the photon-nucleon interaction, we use the decompo-
sition of (8) and Gribov’s estimates for σsoft given in
(9). For σM2N (s) in (9) we can apply the Froissart-Martin
bound of (1), since it is a typical hadronic (on mass shell)
cross section. Note, that the Froissart-Martin bound is a
high energy limit for which the Gribov black disc assump-
tion is perfectly adequate since the diffractive (M 6= M ′)
channels are suppressed relative to the elastic (M = M ′)
channel. We can evaluate σhard in (8) using the inequality
σhard ≤ σQCD where σQCD is determined by (25). We
wish to explore further the nature of the upper limit of
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Fig. 2. Solutions of (21) (b2
0(x)) and of (30) (M2(x)), using the GRV parameterization [16] for the gluon structure function

the integration with respect to M2 in (25). To do this we
return to (21). This equation has no solution if

S(bt = 0)
π2αS

3
r2
⊥ xG(x,

4
r2
⊥

) < 1 . (26)

Therefore, the main contribution to σQCD
γ∗p in (11) comes

from the kinematic region II with r2
⊥ > r2

0(x), where r2
0(x)

is a solution of the equation

S(bt = 0)
π2αS

3
r2
0(x) xG(x,

4
r2
0(x)

) = 1 . (27)

Using the notation S(bt = 0) = 1
πR2

N

(see (17)), (27) can
be rewritten in a more familiar form

παS

3 R2
N

r2
0(x) xG(x,

4
r2
0(x)

) = 1 . (28)

Due to the uncertainty principle

r2
⊥ ∝ 1

k2
⊥

=
1

M2 z(1 − z)
. (29)

As the integration2 over z in (11) is convergent in the limit
σN (x, rperp, bt) = 2 (see (24) and (25)), we can safely put
z = 1

2 in (29)3, and rewrite (28) as an equation for the
upper limit of the integration over M2

4παS

3 R2
N M2(x)

xG(x, M2(x)) = 1 . (30)

2 We will comment on the z-integration in the “hard” cross
section for Ω � 1 later

3 It means that r⊥ ∝ 2
M

. This fact justifies our main input
of a separation scale (M0) in Gribov’s formula of (7)

Collecting all contributions we find

σ(γ∗N) ≤ αem

3π

{
C ln2 s

s0

∫ M2
0

4m2
π

R(M2) M2 dM2

(Q2 + M2)2

+2R∞b2
0 ln

(
Q2 + M2(x)

Q2 + M2
0

)}
. (31)

This equation provides an improved Gribov-Froissart
bound for the photon-hadron total cross section, in place
of the less restrictive one given in (4). For very small x

(30) leads to M2(x) → Λ2 exp(
√

a ln(1/x)), where Λ is
the QCD scale and the constant a has been calculated
in [11]. This implies that for very small x, the bound for
σ(γ∗N) at Q2 < M2(x) is

σ(γ∗N) ≤ αem

3 π
2 R∞

[√
a ln(1/x) − ln(Q2/Λ2)

]
×C ln2 s

s0
. (32)

In the ultra small x limit we obtain that σ(γ∗N) ≤
C ′ (ln( 1

x )
5
2 where C ′ contains all relevant constants.

2.4 Numerical estimates for the behaviour of σ(γ∗N)

We can use (31) also to make numerical estimates of the
high energy behaviour of the DIS total cross section. For
this purpose we rewrite (31) and attempt to evaluate σM2N

of (9) rather than using its high energy bound. To this end
we assume

σ(γ∗N) ≤ αem

3 π

{
σsoft

hadron(s)
∫ M2

0

4mπ

R(M2)M2 dM2

(Q2 + M2)2

+2R∞b2
0 ln

Q2 + M2(x)
Q2 + M2

0

}
, (33)
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where σsoft
hadron(s) is a typical cross section for a meson-

nucleon interaction. To obtain an estimate, we take
σsoft

hadron(s) = 1
2 (σ(π+p)+σ(π−p)), and use the Donnachie-

Landshoff parameterization [14] for its energy behaviour.
Solutions of (21) (i.e. b2

0(x)) and of (30) (i.e. M2(x))
are plotted in Fig. 2, using the GRV parameterization [16]
for the gluon density. In solving (21), we have used (17),
with R2

N = 10GeV 2. The value of R2
N is derived from

HERA data on diffractive production of vector mesons in
DIS, and from the high energy phenomenology for “soft”
processes (see [6] for details). We need to calculate b2

0 at
fixed x for all values of M2 ≤ M2(x). However, since
the integral over M2 is logarithmic, we can evaluate its
contribution at an average M̄2. M̄2 is determined from the
relation

∫ M̄2

M2
0

dM2

Q2+M2 =
∫M2(x)

M̄2
dM2

Q2+M2 , which gives M̄2 =√
(Q2 + M2(x))(Q2 + M2

0 )-Q2. b2
0 at this mass value is

plotted in Fig. 2. We consider the values, given in Fig. 2,
to be more relevant at presently accessible energies, than
the highly asymptotic Froissart-like estimates.

Figure 3 shows the energy dependence of the r.h.s. of
(33) together with the experimental data. The values of
M2(x) (see Fig. 2b) show that we can trust our estimate,
given by (33), only for x ≤ 10−3. This means that we can
compare our bound only with the available experimental
data at relatively small values of Q2. We plot the data and
our estimates from (33) only at Q2 ≈ 0, since for quasi real
photoproduction we reach the smallest values of x. One
should note that (33) was proven only at very small x,
where we can neglect the contribution from the kinematic
region where Ω � 1 (region I). Actually, in the HERA
kinematic region at all available Q2 and W , we cannot ne-
glect the contribution from region I. On the other hand,
Fig. 3 shows that our bound is rather close to the experi-
mental data for real photoproduction. This suggests that
(33) reflects the main physics for the HERA kinematic re-
gion. We expect that the inclusion of the “hard” contribu-
tion from kinematic region I, will improve our estimates,
but will not produce a dramatic change.

3 Matching of the “soft”
and “hard” processes in DIS

3.1 General description

In the following we develop a phenomenological approach
to describe DIS at all values of Q2 based on the separation
of the “soft” and “hard” interactions, in the framework of
the Gribov formula (see (7) and (8)). This approach pro-
vides a relatively simple description, in which the mass
integration with M2 < M2

0 is controlled by the “soft”
interaction. For M2 > M2

0 we are dealing with a “hard”
interaction, which we can treat in pQCD. For σsoft in (8)
we assume that the “soft” high energy strong interaction
suppresses the diffractive dissociation of a hadron state of
mass a M to a hadron state with a different mass M ′. This
property is true, for example, in the additive constituent
quark model, where the interaction of the hadron can be
reduced to an interaction of the quarks, namely, only the

100

120

140

160

180

200

Fig. 3. The energy dependence of the r.h.s. of (33) together
with the experimental data
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Fig. 4. The diagrams for two gluon exchange model

first diagram of Fig. 4 (with M = M ′), contributes. In
a different context this is also a consequence of the im-
plementation of screening corrections [11]. With this as-
sumption, we can rewrite the “soft” contribution in the
form

σsoft =
αem

3π

∫ M2
0

4mπ

R(M2) M2 dM2

(Q2 + M2)2
σM2N (s) . (34)

For σhard we use the general formula of (10), where
σQCD(M2, M ′2, s) is rewritten in terms of the gluon-nuc-
leon interaction in the framework of a two gluon exchange
model, shown in Fig. 4. This model is certainly correct in
the region of very small x (αS ln(1/x) ≥ 1) and large
M2 (αS ln(M2/Λ2) ≥ 1), and it also reflects the main



E. Gotsman et al.: A unitarity bound and the components of photon-proton interactions 309

properties of the QCD interaction outside this particular
kinematic region.

We shall discuss the assumptions made for σsoft and
(34) later. Prior to that we wish to specify the well known
“hard” contribution. This will also be instructive for our
discussion of the “soft” contribution in Sect. 3.3.

3.2 The two gluon exchange model

Equation (11) is the basic formula for the two gluon ex-
change model, where we use the following representation
for σ(x, r⊥) =

∫
d2btσN (x, r⊥, bt)

σ(x, r⊥) =
∫

d2l⊥ σ(l2⊥) { 1 − eil⊥·r⊥} . (35)

One can easily see that the two terms in (35) just reflect
the two diagrams in Fig. 4.

Substituting (35) in (11) and using (24), we obtain

σhard =
αemNc

2π2

∑
f

Z2
f

∫ 1

0
dz[z2 + (1 − z)2]

×
{∫

d2k1⊥ k2
1⊥

(Q̄2 + k2
1⊥)2

∫ ∞

0
σ(l2⊥) dl2⊥

−
∫

d2k1⊥ d2k2⊥ k1⊥ · k2⊥
(Q̄2 + k2

1⊥) (Q̄2 + k2
2⊥)

×σ(l2⊥ = (k1⊥ − k2⊥)2)
}

(36)

In (36) we integrate over the angle between k1⊥ and l⊥
and introduce a new variable M̃

M2 =
k2
1⊥

z(1 − z)
;

M ′2 =
k2
2⊥

z(1 − z)
; (37)

M̃2 =
l2⊥

z(1 − z)
.

The physical meaning of M̃ is clear. Indeed, on the average

|M2 − M ′2| =
∣∣∣∣ k2

1⊥
z (1 − z)

− (k1⊥ − l⊥)2

z (1 − z)

∣∣∣∣
=

−2k1⊥ · l⊥ + l2⊥
z (1 − z)

= 〈M̃2〉 .

In terms of the new variables, (36) has the form

σhard =
αem

4π2

∫ 1

0
dz[z2 + (1 − z)2]

×
∫

dl2⊥

∫ ∞

M2
0

R(M2) dM2

Q2 + M2

{
M2 − Q2

M2 + Q2

+
Q2 + M̃2 − M2√

(Q2 + M2 + M̃2)2 − 4 M2 M̃2


 σ(l2⊥) . (38)

Note that (38) applies in the region M2 > M2
0 and that

R(M2) replaces R∞ = Nc

∑
f Z2

f .

Since z(1−z) = l2⊥
M̃2 , (38) can be rewritten in the form

σhard =
αem

4π2

∫ ∞

4mπ

dM̃2

M̃4

∫ ∞

M2
0

R(M2) d M2

Q2 + M2

×
∫ M̃2

4

Q2
0

[
1 − 2

l2⊥
M̃2

]
l2⊥ dl2⊥ σ(l2⊥)

1√
1 − 4 l2⊥

M̃2

×
{

M2 − Q2

M2 + Q2

+
Q2 + M̃2 − M2√

(Q2 + M2 + M̃2)2 − 4 M2 M̃2


 . (39)

Recalling that σ(l2⊥) = αS(l2⊥)φ(l2⊥)
l2⊥

, where αS(Q2)

xG(x, Q2) =
∫ Q2

αS(l2) φ(l2) dl2 (see [11] for details), we

obtain, in the limit 4 l2⊥
M̃2 � 1, that

σhard =
αem

3π
2π2

∫ ∞

M2
0

dM2 R(M2)
Q2 + M2

∫ ∞

4Q2
0

dM̃2

M̃4

×αS

(
M̃2

4

)
x G

(
x,

M̃2

4

){
M2 − Q2

M2 + Q2

+
Q2 + M̃2 − M2√

(Q2 + M2 + M̃2)2 − 4 M2 M̃2


 . (40)

This equation is our master formula for the evaluation of
the “hard” contribution (with light quarks) to the total
photon-nucleon cross section. Q2

0 is the starting value of
the gluon virtuality for the DGLAP evolutuion equations.

We wish to add two comments concerning the above
master equation.

1) z has the same value before and after the interac-
tion. This is a direct manifestation of the leading log (1/x)
approximation in which we only take into account contri-
butions of the form (αS ln(1/x))n. To understand this we
compare the time of the interaction of the qq̄-pair with
the target (τi) to the life time of the virtual photon fluc-
tuating into a qq̄-pair (τγ∗). According to the uncertainty
principle

τγ∗ ∼ 1
∆E

=
∣∣∣∣ 1
q− − k1− − k2−

∣∣∣∣ = z(1 − z)q+

Q̄2 + k2
⊥

, (41)

where k1 and k2 are the four momenta of quark (anti-
quark) (see Fig. 4). An estimate of the interaction time
can be obtained from the typical time for the emission of
a gluon with momentum l from the quark k1, (i.e., see the
second diagram in Fig. 4).

τi ∼
∣∣∣∣ 1
k1− − k′

1− − l−

∣∣∣∣ =
∣∣∣∣∣ q+

k2
1⊥
z − k2

2⊥
z′ − l⊥

α

∣∣∣∣∣ , (42)
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where α = l+
q+

and z′ = z − α. In the leading log(1/x)
approximation we have α � z and hence

τi ≈ αq+

l2⊥
� τγ∗ . (43)

Equation (43) shows explicitly that the processes of a vir-
tual and/or real photon scattering off a target can be de-
scribed as a two stage process: initially the photon decays
into a qq̄-pair and only a long time after that the pair in-
teracts with the target. This is why such a process can be
described by the Gribov’s formula.

2) An important feature of (40) is the fact that we in-
tegrate over z using z(1−z) = l2⊥

M̃2 . The integral over l2⊥ is
logarithmic and the typical values of l2⊥ are of the order of
l2⊥ ≈ M̃2exp(− 1

γ ) where γ is the anomalous dimension.
Since we are interested in the region of small x where γ is
rather large, one can see that the typical values of z, which
are essential in our integration, turn out to be of the or-
der of unity. As a result the contribution of the aligned jet
model (AJM) [12] is small, at least at high energies. Ac-
tually, an explanation showing that the emission of many
gluons suppresses the nonperturbative AJM-type config-
urations has been given by Gribov and Lipatov [21] more
than two decade ago. They showed that the emission of
multi gluons generates a Sudakov form factor which sup-
presses the AJM-like contributions. Note that the result of
the z integration is very important for the understanding
of our approach since it justifies our idea that M2 is a good
measure of the typical distances involved in the process.
Indeed, r2

⊥ ∝ 1
M2 holds only for z ∼ 1 (see (29)). These

estimates have been made for the total cross section. For
exclusive channels the situation is quite different. For ex-
ample, for the diffractive dissociation in DIS, induced by
a transverse polarized photon, the typical distances are
rather large and do not depend on the value of the mass
in the Gribov’s formula.

For heavy quarks, the diagrams of Fig. 4 give

σhard
Q̄Q =

αem

3π
2 π2

∫ ∞

4m2
Q

dM2 RQQ(M2)
Q2 + M2

∫ ∞

Q2
0

dM̃2

M̃4

×αS

(
M̃2

4

)
x G

(
x,

M̃2

4

){
M2 − Q2

M2 + Q2 (44)

+
Q2 + M̃2 − M2√

(Q2 + M2 + M̃2)2 − 4 (M2 − 4m2
Q)M̃2

}

where RQQ is the heavy quark contribution to the ratio
in (3), and mQ is the mass of the heavy quark. In (44)
we have assumed that the quark is heavy enough to be
described in pQCD without any contribution of the “soft”
processes. In the above formulae x = Q2+M2

W 2 , and W is
the energy of the photon-nucleon interaction.

3.3 A model for the “soft” interactions

Our model for the “soft” interactions is based on (34). We
observe that our discussion on the time structure of the

photon-hadron interaction does not depend on any specific
properties of QCD, and can be considered, therefore, as a
main feature of the parton model approach to high energy
photon induced interactions (see [13]). It means that, the
approximation z = z′ in Fig. 1 applies also for the “soft”
interactions of our model.

In the parton model [13], as well as in the high energy
phenomenology [14], the “soft” processes at high energy
can be described by the exchange of a soft Pomeron which
has the property of Regge factorization [15]

σP (s, M, M ′) = gP (M, M ′)GP (
s

M2 )αP (0)−1 ,

where αP (t) is the Pomeron trajectory and gP (M, M ′)
and GP are vertices of the Pomeron interaction with the
quark-antiquark pair and with the proton respectively.
Substituting this equation in (11) one can see that only
the photon wave function depends on z. This integral is
convergent and z is typically about unity also for a pho-
ton with large virtuality. Coming back to (37) one can see
that M ′ could be different from M only if k2⊥ � k1⊥
(or k2⊥ � k1⊥). On the other hand, in the parton model
the typical transverse momenta (l⊥ in Fig. 4) are of the
order of the “soft” scale, i.e. about 1GeV . Therefore, in a
photon-hadron interaction we expect that the value of M ′
cannot be much larger than the value of M . The success
of the additive quark model (AQM) (see the first diagram
in Fig. 4) in the description of the high energy scatter-
ing (see [14]) supports our assumption that the difference
(M ′ −M) is much smaller than the transverse momentum
scale for the Pomeron.

We can, therefore, rewrite the general Gribov formula
of (7) in the form

σsoft(γ∗N) =
αem

3π

∫ M2
0

4mπ

R(M2)M2dM2

(Q2 + M2)2
σM2N (s)

×
∫ M

−M

Md∆M

M2

gP (M, M ′)
gP (M, M)

M2 + Q2

(M + ∆M)2 + Q2

=
αem

3π

∫ M2
0

4mπ

R(M2)M2dM2

(Q2 + M2)2
σ̃M2N (s) , (45)

where ∆M = M ′ − M .
Note that the ∆M integration is particular to pho-

ton induced reactions and is, obviously absent in the case
of hadron-hadron collisions. This correction, as well as
other relevant corrections, are absorbed in our definition
of σ̃M2n in (45). In light of the above discussion, we choose
(34) and /or (45) as the master formula for our description
of the “soft” contribution.

The quantities appearing in (34) which need to be
specified are the ratio R(M2), and the interaction cross
section of a hadronic system with mass M with the tar-
get (σM2N (s) in (34)). Although, there is experimental
data for R(M2) (see [17]), we have used the parameteriza-
tion of [18] for R(M2) 4. The two main ingredients of this
parameterization, reproducing the experimental data, are

4 We thank E. Gurvich for drawing our attention to [18]
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Fig. 5. The comparison of the experiment
data (see [24] and references therein) for
σ(γ∗p) and our calculation, using (49). The
diagonal line indicates the boundary for x =
10−2

the resonance contribution and the background, which at
high masses approaches the QCD result (R(M2) → R∞).
We approximate σ̃M2N in the resonance region by

σR = κ
1
2

(σ(π+p) + σ(π− + p)) (46)

where we use the Donnachie-Landshoff Reggeon parame-
terization [14] for the cross section of pion-proton interac-
tion,

σR = κ

[
A

(
s

s0

)αP (0)−1

+ B

(
s

s0

)αR(0)−1
]

, (47)

with a Pomeron and Reggeon trajectory intercepts of
αP (0)=1.079 and αR(0)=0.55; s0=1 GeV 2; A=13.7 mb
and B=31.9 mb. We introduce a rescaling constant κ as a
parameter in (46) and (47). κ = 1 corresponds to a sim-
plified AQM where the integrant is taken at ∆M = 0 and
first order corrections of ∆M

M and ∆M
mG

, where mG is the
typical scale of the soft Pomeron, are neglected. This is
discussed further in Sect. 3.4.

To describe the interaction of the background contri-
bution in R(M2), we need to determine the correct energy

variable for the interaction of the hadronic system of mass
M with the target. We suggest to replace the variable s

s0

by 1
xM

, where xM = M2

s . In other words, we replace (47)
by

σ̃M2N = κ

[
A′
(

1
xM

)αP (0)−1

+ B′
(

1
xM

)αR(0)−1
]

,

(48)
where A′ = 13.1 mb and B′ = 41.08 mb. The values of A′
and B′ were chosen so that (47) for the ρ meson-proton
interaction is valid. The variable xM is not unique, but
it correctly describes the high energy interaction, in all
parton-like models in the region of large mass M (see [11]
for example).

3.4 Comparison with the experimental data

To compare with the experimental data, we calculate the
total cross section of the photon-proton interaction using
the following formula
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Fig. 6. Low Q2 and high W data from
ZEUS (see [25]), compared to our predictions
(solid lines), Donnachie-Landshoff approach
[14] (dotted lines) and the GRV parameteri-
zation [16] (dashed lines)

σ(γ ∗ p) = σsoft(Eq. (34), Eq. (48))

+σhard
q̄q (Eq. (40)) + σhard

Q̄Q (Eq. (44)) . (49)

Equation (49) depends on two free parameters: κ and
M2

0 and the input gluon distribution xG(x, M̃2

4 ). In Fig. 5
we plot σ(γ∗p) as a function of W 2 for various values of
Q2 and compare with the relevant experimental data. In
our calculations we have used the GRV parameterization
[16] in higher order of pQCD (GRVHO). We have chosen
the parameters κ = 0.6 and M2

0 = 5 GeV 2 so as to obtain
a reasonable reproduction of the data.

As can be seen from Fig. 5, we obtain a good fit fot
the low Q2 data over the entire W range. However, at Q2

higher than a few GeV 2, our description of the data is de-
ficient in as much as we are not in agreement with the low
energy experimental points and our predicted high energy
behaviour is steeper than the data. Below we elaborate on
these features as well as on some important details of the
suggested model.

1. With only two free parameters, we manage to re-
produce the energy dependence for real photoproduction
and DIS with Q2 < 8GeV 2 cross sections. This is shown
in Fig. 6 where we compare the recent high energy-low Q2

ZEUS data [25] with the predictions of our model. Our
results compare favorably with the Donnachie-Landshoff
[14] and GRV [16] parameterizations.

2. The fact that we are unable to reproduce the low
energy behaviour of the higher Q2 (x > 10−2) data is
not surprizing. These data correspond to higher x values

for which the two gluon approach to DIS is insufficient. In
Fig. 5 we show the line corresponding to x = 0.01 which il-
lustrates this point. Clearly for high x (low W ) one should
also include the contribution coming from the Q2 evolu-
tion of the quark distribution as a part of the pQCD de-
scription of DIS. We discuss below how to expand our
formalism so as to include this input as well. The fit can
also be improved by the utilization of other input par-
ton distributions which are less steep than GRVHO in the
small x limit.

3. An unexpected feature of our results is that we re-
quire a value of κ = 0.6 to rescale the AQM estimate of
the “soft” contribution. As we have noted, this value of
κ reflects the need to integrate over ∆M which is par-
ticular to photoproduction and DIS and does not appear
in hadron-hadron scattering, where the AQM has been
checked experimentally. Our result is different from VDM
[19], where in order to describe the experimental data,
one has to assume that the vector meson-nucleon cross
section is bigger than the AQM estimates. This difference
arises from the background contribution that is neglected
in the VDM approach. It should be stressed that such a
contribution, which is included in our parameterization of
R(M2), is needed to reproduce the Q2-dependence, which
is much smoother than the VDM prediction. In addition
to uncertainties from the ∆M integration we also see at
least two reasons leading to a value of κ smaller than unity.
Our evaluation suggests that using the approximate for-
mula of [18] we overestimate the experimental data by
about 10% (κ ≈ 0.9 from this source). The second source
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Fig. 7. The ratio RCHARM
LIGHT = σ(charm quarks)

σ(light quarks) as function of
W 2 for different values of Q2

is the need for shadowing corrections (SC). SC definitely
diminish the value of the cross section. We can estimate
the SC from the value of the diffractive dissociation cross
section, using the AGK cutting rules [20], which relates
the SC to the total cross section, namely, ∆σSC = σDD,
where σ = σAQM − ∆σSC . The experimental value of the
diffractive cross section is about 15%, both from real pho-
toproduction and from pion-proton interaction. These two
sources suggest a value of κ ≈ 0.7 to which an additional
15% reduction is added due to the ∆M integration5.

4. The inclusion of heavy quark contribution is impor-
tant. In Fig. 7 we plot the ratio RCHARM

LIGHT = σ(charm quarks)
σ(light quarks)

as a function of energy at different values of Q2. This ratio
is rather small for real photoproduction, reaching 5% at
high energies. For large values of Q2 the ratio approaches
30-35% at high energies W ≥ 30 GeV .

In general, our model provides a very simple approach
to incorporate the “soft” and “hard” components of pho-
toproduction and DIS. In the detailed fit of the data we
observe two features that we consider to be rather general.

1. The high energy “hard” contribution turns out to be
sizable, even for Q2 = 0. To illustrate, how important the
“hard” contribution is in our formalism, we plot in Fig. 8
the ratio RH

S = σhard(γ∗p)
σsoft(γ∗p) . One can see that for Q2 = 0,

RH
S ≈ 1% at W =10 GeV and it grows to RH

S ≈ 15%
at W = 300 GeV (s = W 2). This increase is sufficiently
large, that it alone may account for the experimentally
observed increase in the energy dependence of the total
cross section, for real photoproduction. In other words, it
is possible to fit the experimental data assuming that the

5 Note, that a similar suppression is required in a GVDM
description of DIS [26]

“soft” Pomeron (see (47)) has an intercept which is equal
to unity (αP (0)=1).

Our result suggests a possible and interesting inter-
pretation for the origin of the experimentally observed
increase of the total cross sections for hadron-hadron in-
teractions. As for each hadron we also have a contribution
of the “hard” process to the total cross section, due to
the probability that two quarks approach each other at a
sufficiently small distance. The probability for this “hard”
process is controlled by the respective wave functions of
the interacting hadrons.

2. We find contamination of the “hard” processes by
the “soft” ones. For example, at Q2 = 15GeV 2 which is
usually considered a large value for Q2, the ratio RS

H =
σsoft(γ∗p)
σhard(γ∗p) changes from 1 at W = 30 GeV to 0.2 at W =
300 GeV. Even at Q2 = 65GeV 2, RS

H is about 0.12 at W
= 100 GeV. The above results, lead one to view DIS in
a new light, and provide a basis for a better understand-
ing of what is meant by small distances or high photon
virtualities.

3.5 A generalization of our model to larger x

The generalization is based on (40), utilizing the fact that
for the DGLAP [21] evolution equation the following equa-
tion holds in the region of small x (see [22] for example)

∂FDGLAP
2

∂ ln(Q2/Λ2)
=

2αS

9π
xGDGLAP (x, Q2) . (50)

We suggest replacing αSxG(x, Q2) in (40) by ∂F DGLAP
2

∂ ln(Q2/Λ2)
and use this generalized formula for DIS, even in the region
of x not very small. Note, that for x not too small, we
obtain (see [22] for example) a more general formula for
∂F DGLAP

2
∂ ln(Q2/Λ2) than (50) which includes the quark densities.
After doing so, (40) reduces to the form

σhard = 3π2 αem

∫ ∞

M2
0

R(M2) dM2

Q2 + M2

×
∫ ∞

0

dM̃2

M̃2

∂FDGLAP
2 (x, M̃2

4 )

∂M̃2

×
{

M2 − Q2

M2 + Q2

+
Q2 + M̃2 − M2√

(Q2 + M2 + M̃2)2 − 4 M2M̃2


 . (51)

Integrating (51) by parts one obtains

σhard = 3π2 αem

∫ ∞

M2
0

R(M2) dM2

Q2 + M2

×
∫ ∞

0

dM̃2

M̃4
FDGLAP

2

(
x,

M̃2

4

)
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Fig. 8. The ratios a RH
S = σhard(γ∗p)

σsoft(γ∗p) and b RS
H = σsoft(γ∗p)

σhard(γ∗p) as function of W 2 for different values of Q2

×
{

M2 − Q2

M2 + Q2

+
Q2 + M̃2 − M2√

(Q2 + M2 + M̃2)2 − 4 M2 M̃2

− 4 Q2 M2 M̃2

[
√

(Q2 + M2 + M̃2)2 − 4 M2 M̃2]3


. (52)

Actually, a formula of the same type as (52) was first sug-
gested by Badelek and Kwiecinski [23], but using our for-
malism we obtain quite a different result. We can con-
sider (52) as a generalization of the Badelek-Kwiecinski
approach. In addition to the resonances we have also in-
cluded the background contribution, and obtain the con-
tributions of both “soft” and “hard” processes by inte-
grating over M2 and M̃2 in (52).

Numerical results pertaining to (52) will be published
separately.

4 Conclusions

We have achieved two goals in this paper:
1. We provide an explanation of how and why the short

distance (“hard”) interaction, calculable in pQCD, pro-
vides a mass cutoff in the Gribov’s formula for photon-
hadron collisions. We have shown that the Gribov bound
(see (4)) given in [5]), overestimates the photon-hadron
cross section, and should be replaced by a more restrictive
limit, as derived in this paper (see (31),(32) and (33)). At
fixed Q2 as W → ∞ our bound is σ(γ∗p) ≤ C ′(ln 1

x )
5
2 .

2. We developed a simple model which consists of two
contributions: “soft” and “hard”. The “soft” term descri-

bes the long distance contribution, while the “hard” term
is related only to the short distance interaction controlled
by pQCD (and the DGLAP evolution equation [21]). This
simple model with only two parameters provides a good
description of the available experimental data over a wide
range of W and Q2 < 8 GeV 2. We have suggested a tech-
nique of how to improve the high Q2 results at sufficiently
small values of energy W .

Examining our model we found two interesting fea-
tures that may be more general:

a) Short distance effects contribute even at Q2 = 0
for high energies. The contribution is sufficient to explain
the energy rise of the total cross section for photoproduc-
tion, which has been interpreted as an argument that the
“soft” Pomeron has an intercept larger than 1 (see [14]).
This result encourages us to reconsider this widely held ex-
planation, and to estimate the contributions of the “hard”
processes to the growth of hadron-hadron cross sections,
with increasing energy.

b) The long distance processes contribute to the to-
tal cross section even at rather large values of Q2. For
example, at Q2 = 65 GeV 2 and W = 100 GeV they are
responsible for 10% of the total cross section. This obser-
vation can be very important for understanding the energy
dependence, as well as the value of the cross sections of
other processes such as diffractive dissociation, inclusive
production etc. We propose to examine these processes in
the near future using the same approach.

Our approach is not in contradiction with the usual de-
scription of “hard” processes, based on the DGLAP evo-
lution equations with initial nonperturbative parton den-
sities at Q2 = Q2

0. However, we significally enlarged the
region of applicability of such an approach, noting that
the quark-antiquark pair with large mass can be treated in
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pQCD even at Q2 = 0. It allowed us to separate the non-
perturbative contribution in a different way than usually
done and to calculate a part of the initial parton densities
at Q2 = Q2

0 in pQCD.
In general, the model suggested allows one to discuss

the interface between long and short distance processes,
not only on the qualitative level but also on a quantitative
one. We are of the opinion that our model incorporates
what is known, both theoretically and phenomenologically
about “soft” and “hard” physics, and provides a method
to estimate the different contributions to a variety of pro-
cesses. It also allows one to specify the kinematic region
where the “hard” contribution dominates, and to calculate
it within the framework of pQCD.
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